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Abstract

Themajority of work carried out in the formal methods
communitythroughoutthe last threedecadesas(for good
reasons)beendevoted to special languages designedto
maleit easierto experimentwith metanizediormal meth-
odssud as theoemprovers and modelcheders. In this
paperwewill attemptto givecorvincingargumentgor why
we believe it is time for the formal methodscommunityto
shift someof its attentiontowardsthe analysisof programs
writtenin modernprogramminganguages.In keepingwith
thisphilosophywehavedevelopeda verificationandtesting
ervironmentfor Java, Java PathHnder (JPF), which inte-
gratesmodelcheding, program analysisandtesting Part
of this work has consistedof building a new Java Virtual
MachinethatinterpretsJavabytecodeJPF usesstatecom-
pressionto handlebig states,and partial order reduction,
slicing, abstaction,and runtimeanalysistechniquesto re-
ducethe statespace JPF hasbheenappliedto a real-time
avionicsopenating systemdevelopedat Honeywell, illus-
trating an intricate error, and to a modelof a spacecaft
contmoller, illustrating the combinationof abstmaction, run-
timeanalysis,andslicing with modelcheding.

1 Intr oduction

The majority of work carriedoutin the formal methods
communitythroughouthelastthreedecadessinceHoares
axiomaticmethodfor proving programscorrect[24], has
beendevoted to speciallanguageghat differ from main
streamprogramminganguagesTypical examplesarefor-
mal specificationanguage$40, 2, 39], purelylogic based
languagesisedin theoremprovers[13, 33, 7], andguarded
commandanguagesisedin modelcheclers[30, 29, 2§].
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In a few cases,modelinglanguageshave beendesigned
to resemblegprogramminganguage$26], althoughthe fo-

cushasbeenon protocoldesigns.Someof theselinguistic

choiceshave made andstill makeit feasibleto morecorve-

niently experimentwith new algorithmsandframeworksfor

analyzingsystemmodels. For example,a logic basedan-

guageis well suitedfor rewriting, andarule basedyuarded
commandnotationis corvenientfor a modelchecler. We

believe that continuedresearchn speciallanguagess im-

portantsincethis researchinvestigatessemanticallyclean
languageconceptsandwill impactfuturelanguagedesigns
andanalysisalgorithms.

We, however, want to argue that a next importantstep
for the formal methodssubgroupof the softwareengineer
ing communitycould be to focus someof its attentionon
real programswritten in modernprogramminglanguages.
We believe thatstudyingprogramminganguagesomehav
will resultin somenew challengeghat will drive the re-
searchin new directionsasdescribedn thefirst partof the
paper Our main interestis in multi-threaded jnteractve
programswhereunpredictablénterlearings cancauseer
rors,but theargumentextendsto sequentiaprograms.

In the secondpart of the paper we describeour own
effort to follow this vision by presentinghe development
of averification,analysisandtestingenvironmentfor Java,
called Java PathFinder(JPF). This environmentcombines
modelcheckingechniquesvith techniquegor dealingwith
largeor infinite statespacesTheseechniqueincludestatic
analysisfor supportingpartial orderreductionof the setof
transitionsto be exploredby the modelchecler, predicate
abstractiorfor abstractinghestatespaceandruntimeanal-
ysissuchasraceconditiondetectiorandlock orderanalysis
to pinpointpotentiallyproblematiccodefragments.Part of
this work hasconsistedf building a new Java Virtual Ma-
chine(JVM’PF) thatinterpretslava bytecode JVM/PF is



calledfromthemodelcheckingengineto interpretbytecode
generatedby a Java compilet

We believe it is an attractve ideato develop a verifi-
cationervironmentfor Java for threereasons.First, Java
is amodernlanguagdeaturingimportantconceptsuchas
object-orientatiomndmulti-threadingwithin onelanguage.
LanguagesuchasC andC++, for example,do not support
multi-threadingas part of their core. Second Java is sim-
ple,for examplecomparedo C++. Third, Javais compiled
into bytecode,and hence,the analysiscanbe doneat the
bytecoddevel. Thisimpliesthatsuchatool canbeapplied
to ary languagehatcanbetranslatednto bytecodé. Byte-
codefurthermoreseemgo be a corvenientbreakdevn of
Javainto easilymanageabléytecodenstructionsandthis
seemdo have easedhe constructionof our analysistool.
JPFis the secondgeneratiorof a Java modelchecler de-
velopedat NASA Ames. Thefirst generatiorof JPF(JPF1)
[16, 20] wasatranslatofrom Javato the Promeldanguage
of the Spinmodelchecler.

Thepaperis organizedasfollows. Section2 outlinesour
argumentdor applyingformal methodsto programs.Sec-
tion 3 describesIPE Section4 presentstwo applications
of JPF:areal-timeavionics operatingsystemdevelopedat
Honeywell, illustrating an intricate error; and a model of
a spacecraft controllet, illustrating the combinationof ab-
stractionyuntimeanalysisandslicingwith modelchecking
tolocateadeadlock Botherrorswereerrorsin therealcode
of thesesystems. Finally, Section5 containsconclusions
anda descriptionof futurework.

2 Why Analyze Code?

It is often arguedthat verification technologieshould
be appliedto designsratherthanto programssincecatch-
ing errorsearlyatthe designlevel will reducemaintenance
costslater on. We do agreethat catchingerrorsearly is
crucial. Stateof the art formal methodsalso most natu-
rally lendthemselesto designssimply dueto thefactthat
designshave lesscompleity, which make formal analysis
morefeasibleandpractical. Hence designverificationis a
veryimportantresearchopic, with the mostrecentpopular
subjectbeinganalysisof statechart§l5], suchasfor exam-
ple foundin UML [3]. However, we wantto arguethatthe
formalmethodscommunityshouldput someof its attention
on programdor a numberof reasonghatwe will describe
below.

Firstof all, programsftencontainfatalerrorsin spiteof
the existenceof carefuldesigns Many deadlocksaandcriti-
cal sectionviolationsfor exampleareintroducedat a level
of detailwhich designgypically do notdealwith, if formal
designsaremadeatall. Thiswasfor exampledemonstrated

1For example, there already exist translatorsfrom Eiffel, Ada,
OCAML, SchemeandPrologto bytecode.

in the analysisof NASA's RemoteAgent spacecrafton-
trol systemwrittenin the LISP programmindanguageand
analyzedusingthe Spin modelchecler [19]. Hereseveral
classicamulti-threadingerrorswerefoundthatwerenotre-
ally designerrors,but ratherprogrammingnistakessuchas
forgettingto enclosecodein critical sections. One of the
missingcritical sectionerrorsfound using Spin was later
introducedn a sibling module,andcaused realdeadlock
during flight in space,60,000miles from earth[18]; see
Sectiond.1. Anotherway of describingherelationshipbe-
tweendesignandcodeis to distinguishbetweertwo kinds
of errors.On the onehandthereareerrorscausedy flaws
in underlyingcomplex algorithms. Examplesof comple
algorithmsfor parallel systemsare communicationproto-
cols [21, 23] and garbagecollection algorithms[17, 35].
The otherkind of errorsare more simple mindedconcur
reng/ programmingerrors,suchasforgettingto put code
in a critical sectionor causingdeadlocks.This kind of er
rorswill typically not be caughtin a design,andthey are
arealhazardjn particularin safetycritical systems.Com-
plex algorithmsshouldprobablybe analyzedat the design
level, althoughthereis noreasorsuchdesignsannoteex-
pressedn a modernprogramminganguage.However, as
will beshavn onarealexamplein Sectiond.2,deepdesign
errorscanalsoappeain thecode.

Secondpnecanarguethat sincemodernprogramming
languagesiretheresultof decade®f researchthey arethe
resultof goodlanguagelesignprinciples.Hence they may
be good design/modelindanguages.This is to someex-
tentalreadyan appliedideawithin UML wherestatechart
transitions(betweencontrol states)can be annotatedvith
code fragmentsin your favorite programminglanguage.
In fact, the distinction betweendesignand programgets
blurredsincefinal codemay getgeneratedrom the UML
designs An additionalobsenationis thatsomeprogrande-
velopmentmethodssuggest prototypingapproachwhere
the systemis incrementallyconstructedusing a real pro-
gramminglanguageratherthanbeingderivedfrom a pre-
constructedlesign.This wasfor examplethe casewith the
RemoteAgent[32] mentionedabove. Furthermoreary re-
searchresulton programmindanguageganbenefitdesign
verificationsincedesigngypically arelesscomplex.

A third, andvery differentkind of argumentfor studying
verificationof realprogramss thatsuchresearctwill force
the communityto dealwith very hard problems,and this
maydrivetheresearclinto new areasWe believefor exam-
ple thatit could be advantageousor formal methodsto be
combinedwith otherresearcHields thattraditionally have
beenmorefocusedon programssuchasprogramanalysis
andtesting.Suchtechniquesiretypically lesscomplete put
they oftenscalebetter We believe thatthe objective of for-
mal methodss notonly to prove programsorrect,but also
to dehug programsandlocateerrors.With suchamorelim-



ited ambition,one may be ableto apply techniquesvhich
are lesscompleteand basedon heuristics,suchas certain
testingtechniques.

Fourth, studyingformal methodsfor programmingan-
guagesnay furthermorehave somederived advantagedgor
the formal methodscommunitydue to the fact that there
is atendeny to standardizg@programminganguagesThis
may malke it feasibleto compareand integrate different
tools working on the samelanguage- or on “clean sub-
sets”of theselanguagesAs mentionedabove, it would be
very usefulto studytherelationshipbetweerformal meth-
ods and other areassuchas programanalysisand testing
techniques.Working at the level of programswill male it
possibleto betterinteractwith thesecommunitiesWe have
alreadyhadonesuchexperiencan our informal collabora-
tion with KansasStateUniversity, whereourtool generated
aslicing criteriabasedbon a runtimeanalysisandtheir tool
could slice the Java programbasedon this criteria, where
afterwe couldapplyourmodelcheclerto theresultingpro-
gram.A final dervedadwantagewill bethe mary ordersof
magnitudancreasedccesso realexamplesandusersvho
maywantto experimentwith thetechniqueproduced.This
may have a very importantimpacton driving the research
towardsscalablesolutions.

In general,it is our hopethatformal methodswill play
a role for everydaysoftware developers. By focusingon
real programminganguagesve hopethat our community
will beableto interactmoreintensively on solvingcommon
problems Furthermorethetechnologyransfermproblemso
often mentionedmay vanish,andinsteadbe replacedby a
technologydemand.

3 Model Checking Java Programs

It is well known thatconcurrenprogramsarenon-trivial
to constructandwith Java essentiallygiving the capability
to anyone for writing concurrentprograms,we believe, a
modelchecler for Java might have a bright future. In fact,
oneareawherewe believeit canhave animmediateémpact
is in ervironmentswhereJava is taught. In the restof this
sectionwe will addressomeof the mostimportantissues
in the modelcheckingof programminganguagesSpecifi-
cally, wewill highlightthemajorreasonsvhy modelcheck-
ing programss consideredhard,andthenillustratehow we
tackletheseproblemswithin JPFE

3.1 Complexity of LanguageConstructs

Input languagedor model checlers are often kept rel-
atively simpleto allow efficient processingduring model
checking.Of coursethereareexceptiongo this, for exam-
ple, Promelathe input notationof Spin [26], moreresem-
bles a programminglanguagethan a modelinglanguage.

Generalprogramminglanguageshowever, containmary
new featuresalmostnever seenin model checkinginput
languagesfor example,classesdynamicmemoryalloca-
tion, exceptions floating point numbersmethodcalls, etc.
How will thesebe treated? Threesolutionsare currently
being pursuedby differentgroupstrying to model check
Java: one cantranslatethe new featuresto existing ones,
onecancreatea modelchecler that can handlethesenen
featurespr, onecanusea combinationof translatioranda
new/extendedmodelchecler.

3.1.1 Translation

The first versionof JPF[20], aswell asthe JCAT system
[10Q], werebasedn atranslationfrom Javato Promela Al-
thoughboththesesystemaveresuccessfuin modelcheck-
ing someinterestingJava programs[22], suchsource-to-
sourcetranslationsuffer from two seriousdravbacks:

LanguageCoverage — Each language feature of the
sourcdanguagenusthavea“counterpart’in thedesti-
nationlanguageThisis nottrue of Java andPromela,
sincePromelafor example,doesnot supportfloating
pointnumbers.

SourceRequired — In orderto translateonesourceto an-
other theoriginal sourcds requiredwhichis oftennot
thecasdor Java, sinceonly thebytecodesireavailable
— for examplein the caseof the libraries and code
loadedoverthe WWW.

For Java, the requirementhat the sourceexists canbe
overcomeby rather doing a translationfrom bytecodes.
Thisistheapproachusedby theBANDERA tool [6], where
bytecodesaftersomemanipulationaretranslatedo either
Promelaor the SMV modelchecler’'sinput notation.

3.1.2 Custom-madeModel Checker

In orderto overcomethe languagecoverageproblemit is
however obvious that either the currentmodel checlers
needto be extended pr anew custom-madenodelchecler
mustbe developed.Somework is beingdoneon extending
the Spin model checler to handledynamicmemoryallo-
cation[11, 42], but againin termsof Java this only covers
a part of the languageand much more is requiredbefore
full Javalanguageoveragewill beachievedthisway. With
JPFwetooktheotherroute,we developedour own custom-
mademodel checler that can executeall the bytecodein-
structions,andhenceallow the whole of Java to be model
checled. The modelchecler consistof our own Java Vir-
tual Machine(JVM’PF) thatexecuteshe bytecodesanda
searchcomponenthat guidesthe execution. Note thatthe
modelchecler is thereforean explicit statemodelchecler,
similarto Spin,ratherthana symboliconebasedn Binary



DecisionDiagramssuchas SMV [29]. A nice side-efect
of developingour own model checler was the easewith
which we areableto extendthe modelchecler with inter-
estingnew searchalgorithms—thiswould, in general,not
have beeneasyto achieve with existing modelcheclers(es-
pecially not with Spin). A major designdecisionfor JPF
wasto malke it asmodularandunderstandablto othersas
possibleput we sacrificedspeedn theprocess— Spinis at
leastanorderof magnitudeasterthanJPFE We believe this
is apriceworth payingin thelongrun.

JPFis written in Java and usesthe JasaClasspackagé
to manipulateclassfiles Althoughwe againsacrificespeed
to someextend by not using C/C++, thereis no doubtin
our mindsthat doing JPFin Java hassaved us monthson
developmentime. Theinitial systemthatcouldonly han-
dle integerbasedbytecodegi.e. the samelanguagesubset
asthe Java modelcheclerstranslatingto Spin), wasdevel-
opedin 3 man-monthsThe systemasdescribedn this pa-
per, requiredapproximatelyl2 man-months.The current
modelcheclercanonly checkfor deadlocksinvariantsand
userdefinedassertionsn the code;temporallogic model
checkingwill beaddedn the nearfuture

3.2 Complex States

In orderto ensurgerminationduringexplicit statemodel
checkingpnemustknow whena stateis revisited. It is com-
monfor a hashtableo be usedto storestateswhich means
an efficient hashfunction is requiredas well asfaststate
comparison.

The Verisoftsystem[12] wasdevelopedto modelcheck
software,but thedesignpremisewasthatthe stateof a soft-
waresystems too complex to beencodecefficiently, hence
Verisoft doesnot storeary of the statesit visits (Verisoft
limits the depthof the searchto getaroundthetermination
problemmentionedabove). Sincethe Verisoft systemexe-
cutestheactualcode(C/C++),andhaslittle controloverthe
execution,exceptfor someuserdefined‘hooks” into com-
municationstatementst is almostimpossibleo encodehe
systemstateefficiently. Thisinsightalsocornvincedusthat
we cannottie our modelcheckingalgorithmin with anex-
isting JVM, thatis in generalhighly optimizedfor speed,
but will notallow thememoryto beencodedasily

Ourdesignphilosophywasto keepthe statesof the JVM
in acomplex data-structurehut onethatwould allow usto
encodethe statesin an efficient fashionin orderto deter
mine if we have visited statesbefore. Specifically each
stateconsistsof three components:information for each
threadin the Java program,the staticvariables(in classes)
andthe dynamicvariables(in objects)in the system.The
informationfor eachthreadconsistsof a stackof frames,
onefor eachmethodcalled,whereaghe staticanddynamic

2http://www.inf.fu- berlin.de/"dahm/JavaClass/

informationconsistof informationaboutthe locks for the
classes/objecmndthefieldsin the classes/object&achof
the componentsnentionedabore is a Java data-structure.
In earlystage®f JPFdevelopmentve did storethesestruc-
turesdirectlyin ahashtablebut with terribleresultsin terms
of memoryand speed: 512Mb would be exhaustedafter
only storing+50000 statesand+20 statescouldbe evalu-
atedeachsecondona SFARC ULTRAGO).

The solutionwe adoptedto make the storing of states
moreefficient, wasageneralizatiorf the Collapsemethod
from Spin[25]: eachcomponentf the JVM stateis stored
separatelyn atable,andtheindex at whichthe component
is storedis then usedto representhe component. More
specifically eachcomponent(for examplethe fields in a
class/object)s storedin a tablefor that componentijf the
specificcomponents alreadyin the tableits index is re-
turned,andif it is uniqueit is storedat the next openslot
andthatindex is returned. This hasthe effect of encoding
alarge structureinto no morethananinteger. Collapsing
statesin this fashionallows fast statecomparisonssince
only theindexesneedto becomparedandnotthestructures
themseles. The philosophybehindthe collapsingscheme
is that althoughmary statescan be visited by a program
the underlyingcomponent®f mary of thesestateswill be
the same. A somavhat trivial exampleof this is whena
statementipdates localvariablewithin amethod:theonly
partof thesystenthatchangeds theframerepresentinghe
method all the otherpartsof the systemstateis unafected
andwill collapseto thesameindexes.Thisactuallyalludes
to the othersimpleoptimizationwe added:only updatethe
partof the systemthatchangesi.e., keeptheindexescalcu-
latedfor the previous statethe same only calculatetheone
thatchangedto datewe have only donethis optimization
in somepartsof thesystem) Currentlythesystemcanstore
millions of statedn 512Mbandevaluateshetweerb00and
1500statepersecondlependingnthesizeof thestate(on
aSFARC ULTRAG0).

JPFin its currentstatealreadyillustratesthat software
systemsvith comple statesanbeefficiently analyzedsee
sectiord), but with somefurtherextensionsandbetterhard-
wareplatformsto runit on,webelieve, system®f upto 10k
linesof codecouldbeanalyzed.

3.3 Curbing the State-explosion

Maybe the mostchallengingpart of model checkingis
reducingthe size of the state-spac& somethinghatyour
tool canhandle.Sincedesignsftencontainlessdetailthan
implementationsmodel checkingis oftenthoughtof asa
techniquethat is bestappliedto designs,ratherthanim-
plementations.We believe that applying model checking

SAll the tablesareimplementedas hashtablesandin somecaseshe
“index” usedwill beareferenceo anobjectratherthananintegervalue.



by itself to programswill not scaleto programsof much
morethan10klines. Theavenuewe arepursuingis to aug-
mentmodelcheckingwith informationgatheredrom other
techniquesn orderto handlelarge programs.Specifically
we areinvestigatinghe useof abstracinterpretationstatic
analysisandruntimeanalysisto allow moreefficientmodel
checkingof Java programs.

3.3.1 Abstraction

Recentlytheuseof abstractioralgorithmsbhasednthethe-
ory of abstracinterpretatiori8], have recevedmuchatten-
tion in the model checkingcommunity[14, 9, 36, 37, 5].
The basicideaunderlyingall of theseis thatthe userspec-
ifies an abstraction functionfor certainpartsof the data-
domainof a system,andthe modelcheckingsystemthen,
by using decisionproceduresgither automaticallygener
ates,on-the-flyduring model checking,a state-graplover
the abstractdata[14, 36, 9] or automaticallygeneratesn
abstractsystem,that manipulateghe abstractdata,which
canthenbe modelchecled[37, 5]. Thetrade-of between
thetwo techniquess thatthe generatiorof the state-graph
can be more precise,but at the price of calling the deci-
sion procedureghroughoutthe model checking process,
whereaghe generatiorof the abstractsystemrequiresthe
decisionprocedureso be calledproportionalto the size of
the program. It hasbeenour experiencethat abstractions
are often definedover small partsof the program,within
oneclassor over a small group of classeshencewe favor
the generatiorof abstracprogramsyatherthanthe on-the-
fly generatiorof abstractstate-graphsAlso, it is unclear
whetherthe abstracstate-graplapproactwill scaleto sys-
temswith morethana few thousandstatesdueto thetime
overheadncurredby callingthe decisionprocedures.
Specifically we have developed an abstractiontool
for Java that takes as input a Jasa program anno-
tated with userdefined predicatesand, by using the
Stanford Validity Checler (SVC) [1], generatesanother
Java program that operateson the abstractpredicates.
For example, if a program containsthe statementx++
and we are interestedin abstractingover the predi-
catex==0, writtenasAbstract.addBoolean("B",x
== 0), thenthe incrementstatementwill be abstracted
tothecode:“if (B) then B = false else B =
Verify.randomBool() ” wherethe randomBool()
methodindicatesa nondeterministicchoice. The BAN-
DERA tool usessimilar techniquesto abstractthe data-
domainsof say an integer variablein Jasa to work over
the positive negativeandzeo (the so-calledsign abstrac-
tion), by using the PVS model checler. The novelty of
our approachlies in the fact that we can abstractpredi-
catesover morethanoneclass:for example,if classA has
a field x and classB hasa field y thenwe can specifya

predicateAbstract.addBoolean("xGTy", Ax >
B.y) . Theabstractedodeallows for mary instantiations
of objectsof classA andB to be handledcorrectly— the
interestedeaderis referredto [43] for moredetailson the
techniquesised.

Althoughour Java abstractiortool is still underdevelop-
mentwe have hadvery encouragingesults. For example
we can, in a matterof secondsabstractthe omnipresent
infinite-stateBakery algorithmwritten in Java to one that
hasfinite-stateand can be checled exhaustvely. In sec-
tion 4.1 we alsoshav how the abstractiortool is usedon a
realexample.

3.3.2 Static Analysis

Staticanalysids atechniqueoftenused,n all areasf soft-
ware engineeringto achiese a reductionin programsize.
Only comparatiely recentlyhastherebeenary actvity in
usingit to reducethe size of systemsdeforemodelcheck-
ing. Specifically it was noticedthat slicing [41], canbe
a usefulway of reducingprogramsizeto allow more effi-
cientmodelchecking[31, 4]. The bestexponentof using
slicing to reduceJava programsfor modelcheckingis the
BANDERA tool [6], wherethey usethevariablesoccurring
in anLTL formulain their slicing criteria. We believe this
is averyinterestingavenuefor furtherresearclandarecur
rentlyin theproces®f interfacingJPFwith theBANDERA
tool.

Within JPFwe are currently using static analysistech-
niguesto determinewhich Java statements$n a threadare
independentf statementi otherthreadghatcanexecute
concurrently This informationis then usedto guide the
partial-orderreductiond27] built into JPFE Partial-orderre-
ductiontechniquegnsurethatonly oneinterleasing of in-
dependenstatementss executedwithin themodelchecler.
It is well establishedrom experiencewith the Spin model
checler that partial-orderreductionsachieze an enormous
state-spaceeductionin almostall casesWe have hadsim-
ilar experiencewith JPE whereswitchingon partial-order
reductioncausednodelcheckingrunsthatranfor hoursto
finish within minutes.We believe modelcheckingof (Java)
programswill notbetractablein generaif partial-orderre-
ductionsarenot supportedy the modelcheclerandin or-
derto calculatetheindependenceelationsrequiredto im-
plementthereductionsstaticanalysids required.

3.3.3 Runtime Analysis

Runtimeanalysisis conceptuallybasedon the idea of ex-
ecutingthe programonce,andobservingthe generateax-
ecutiontraceto extractvariouskinds of information. This
informationcanthenbeusedo predictwhethemtherdiffer-
entexecutiontracesmayviolate somepropertieof interest
(in additionof courseto demonstrat@vhetherthegenerated



traceviolatessuchproperties).Note that the generateax-
ecutiontraceitself doesnothave to violatetheseproperties
in orderfor their potentialviolationin othertraceso bede-
tected. Thesealgorithmstypically will not guaranteghat
errorsarefoundsincethey work onanarbitrarytrace.They
alsomayyield falsepositives.Whatis attractive aboutsuch
algorithmsis, however, thatthey scalevery well, andthat
they oftencatchthe problemshey aredesignedo catch.In
practiceruntimeanalysisalgorithmswill notstoretheentire
executiontrace,but will maintainsomeselectednforma-
tion aboutthe past,andeitherdo analysisof this informa-
tion on-the-fly or after programtermination. An example
is the dataracedetectionalgorithm Eraser[38] developed
at Compag. Anotherexampleis a locking order analysis
calledLockTreewhich we have developed. Both theseal-
gorithmshave beenmplementedn JPF Below wedescribe
thesetwo algorithms,andthendescribehow they areinte-
gratedin JPFto run stand-alonegr integratedwith model
checkingto reducethe statespace.

The Eraseralgorithmdetectdataraces.A dataraceoc-
curswhentwo concurrenthreadsaccess sharedvariable
andwhenat leastoneaccesss awrite, andthethreadsuse
no explicit mechanisnto preventthe accessefrom being
simultaneous.The programis dataracefree if for every
variablethereis a nonemptysetof locks that all threads
own whenthey accesghe variable. The Eraseralgorithm
works by maintainingfor eachvariablex asetL, of those
locksactive whenthreadsaccesshevariable.Furthermore,
for eachthreadt is maintaineda setL; of thoselockstaken
by thetreadat ary time. Wheneer athreadt accessethe
variablez, thesetL, is refinedto theintersectiorbetween
L, andL; (L, = LN L), althoughthefirstaccesgustas-
signsL; to L,,.. A raceconditionmaybepotentialif L, ever
become&mpty Thealgorithmdescribedn [38] is relaxed
to allow variablesto beinitialized without locks, andto be
readby severalthreadswithoutlocks,if no-onewrites.

The LockTree algorithm looks for potentialdeadlocks
by detectingdifferencedn the orderin which threadsake
locks. A classicaldeadlocksituationcanbe definedasone
threadl’; accessingwo Locks K andL, in thatorder while
anothethreadaccessethemin thereverseorder Thedead-
lock may thenoccurif T; takes K, andthenT, takes L.
Now noneof thethreadscancontinue. If we definedead-
lock in this limited way, a programis deadlockfree if all
locks areaccessedh the sameorder The LockTreealgo-
rithm searchefor theviolationof suchanorderingbetween
locks. It maintainsatreeof lock ordersfor eachthread.and
compareghesetreesat the endof anexecution. Thisis in
contrastwith the Eraseralgorithmwhich doesthe analysis
on-the-fly

Runtimeanalysiscanbe usedin two modeswithin JPF
It canfirst of all be usedstand-alonén simulationmode.
Second runtime analysiscan be usedto guide the model

checler. We have madeexperimentsvherethe Erasemod-
ule in JPFgenerates so-calledracewindow consistingof
thethreadsnvolvedin aracecondition. Themodelchecler
is thenlaunched focusingon the racewindow by forcing
the schedulealwaysto pick threadsin the window before
otherthreadsIn thenearfuture,we planto performruntime
analysisduringthe modelcheckingitself.

4 Applications of JPF Tools

In this sectionwe describethe applicationof JPFand
its relatedtools to two real-world examples. Thefirst is a
modelof a spacecraftontroller(section4.1) in which we
illustrate how JPFcanfind errorsthat wereintroducedin
the codingphase(i.e. afterdesign). This examplealsoil-
lustrateshow the differenttechniquesusedin JPFcanbe
combined.Thesecondexampleis areal-timeoperatingsys-
tem(sectiord.2) with asubtleerrorin thetime-partitioning
of threadsthatis in factanexampleof anerrorthatwasin-
troducedduring design,but wasnot discoreredduring the
designdueto alack of detail.

4.1 The RemoteAgent SpacecraftController

The RemoteAgent(RA) is an Al-basedspacecrafton-
troller that hasbeendevelopedat NASA Ames Research
Center It consistof threecomponentsa Plannetthatgen-
erategplansfrom missiongoals;an Executive thatexecutes
the plans;andfinally a Recwery systemthat monitorsthe
RA's status,and suggestsecovery actionsin caseof fail-
ures. The Executive containsfeaturesof a multi-threaded
operatingsystem,andthe Plannerand Executive exchange
messagef aninteractve manner Hence,this systemis
highly vulnerableto multi-threadingerrors. In fact, during
realflight in May 1999,the RA deadlocledin spacegcaus-
ing the groundcrew to put the spacecrafon standby The
groundcrew locatedthe error using datafrom the space-
craft, but asled asa challengeour groupif we couldlocate
the error usingmodelchecking. This resultedin an effort
describedn [18], andwhichwe shallshortlydescriben the
following. Basicallywe identifiedthe error usinga com-
bination of codereview, abstractionand model checking
using JPF1,the first generationof Java PathFinder Dur-
ing codereview we got a suspicionaboutthe error since
it resemblednediscoreredusingthe SPINmodelchecler
beforeflight [19]. The modelingthereforefocusedon the
codeundersuspiciorfor containingtheerror. Whatwe will
describen thefollowing is theabstractiorprocessisingthe
abstractioniool, whichalsoworksfor thenew generatiorof
JPE

The major two componentdo be modeledwere events
andtasks,asillustratedin Figure 1. The figure shavs a



Java classEvent from which eventobjectscanbe instan-
tiated. The classhasa local countervariableandtwo syn-
chronizedmethods,one for waiting on the eventand one
for signalingthe event, releasingall threadshaving called
wait _for _event . In orderto catcheventsthatoccurwhile

tasks are executing, each event has an associatedevent
counterthatis increasedvheneerthe eventis signaled.A

taskthenonly callswait _for _event in casethis counter
hasnotchangedhencetherehave beemonew eventssince
it waslastrestartedrom a call of wait _for _event . The
figure shows the definition of one of the tasks. The task’s
actuity is definedin therun methodof the classPlanner

which itself extendsthe Thread class,a built-in Java class
thatsupportghreadprimitives. Thebodyof therun method
containsan infinite loop, wherein eachiterationa condi-
tional call of wait _for _event is executed.The condition
is thatno new eventshave arrived, hencethe eventcounter
is unchanged.

class Event {
int count = O;

public  synchronized void wait_for_event() {
try{wait();}catch(InterruptedException ey}
}

public  synchronized void  signal_event(){

count = count + 1;

notifyAll();

I

class Planner extends
Event eventl,event2;

Thread{

int count = O;
public  void run(){
count = eventl.count;
while(true){
if (count == eventl.count)

eventl.wait_for_event();
count = eventl.count;
/* Generate plan */
event2.signal_event();

}h
Figure 1. The RAX Error in Java

The showvn program has theoretically infinitely
mary reachablestates due to the repeatedincrement
of the count variable in the events. We use abstrac-
tion to remove those count variables by specifying
Abstract.remove(count) in the classesf Event and
Planner . In placeof thesevariableswe declareabstrac-
tion predicatescorrespondingto those predicatesin the
programthatinvolve count variablesForinstancewe put
Abstract.addBoolean("EQ",count==event l.coun t)
in the definition of the Planner class. After having an-
notatedthe programwith theseabstractiondeclarations,
the abstractiontool is applied and a new abstracted
programis generated. JPF thereafterreveals the dead-
lock in this abstractedprogram. The error trace shaws
that the Planner first evaluatesthe test “(count ==
eventl.count) ", which evaluatesto true; then, before
the call of eventl.wait _for _event() the Executive

signalsthe event, therebyincreasinghe event counterand
notifying all waiting threadspf which therearenone. The
Plannernow unconditionallywaits and missesthe signal.
The solutionto this problemis to enclosethe conditional
wait in a critical sectionsuchthat no eventscanoccurin
betweenthe testand the wait. In fact, the samepattern
occurredin several placesand in all other placesthere
was sucha critical sectionaround. This was simply an
omission.

The abstractJava model of what happenedon board
the spacecraftvas createdbasedon a suspicionaboutthe
sourceof the error obtainedduring code review. This
suspicionwas createdby the fact that this same pat-
tern had beenfound to causeerrorsin a different part
of the RA during the pre-flight effort using the SPIN
model checler two years before [19]. The source of
the error, a missingcritical section,could, however, have
beenfound automaticallyusing the Eraserdatadetection
algorithm. The variable count in classEvent is ac-
cessedunsynchronizedoy the Planners run methodin
theline: “if (count == eventl.count) ", specifically
the expression:eventl.count . Henceeventhoughthe
signal _event called by the Executive will increasethe
variablesynchronizedthe above conditionin the Planner
canbe executedevenduringsuchasignal. This may cause
adataracewherethecount variableis accessedimultane-
ouslyby the Plannerandthe Executive. WhenrunningJPF
in Erasermode,it detectsthis raceconditionimmediately
This couldbeenoughto locatetheerror, but only if onecan
seetheconsequencedhe JPFmodelchecler, ontheother
hand,canbeusedto analyzethe consequences.

To illustrate JPF5 integration of runtime analysisand
model checking,the examplewas madeslightly morere-
alistic by addingextra threadghat madethe Java program
resemblethe real system. The new programhad more
than 10%° states. Thenwe appliedJPFin its specialrun-
time analysis/modetheckingmode.It immediatelyidenti-
fied theraceconditionusingthe Eraseralgorithm,andthen
launchedhe modelchecler on athreadwindow consisting
of thosethreadsinvolved in the race condition: the Plan-
nerandthe Executive, locatingthe deadlock- all within 25
secondsAs anadditionalexperimentin collaborationwith
the designersof the BANDERA tool, we fed part of the
resultof the racedetection,namelythe variablethatis ac-
cessedinprotectedinto BANDERA's slicingtool, whichin
turn createda programslicewhereall codeirrelevantto the
valueof the counterhadbeenremoved. JPFthenfoundthe
deadlockonthis slicedprogram.Thisillustratesour philos-
ophy of integrating techniquedrom differentdisciplines:
abstractionwas usedto turn an infinite programinto a fi-
nite one,runtimeanalysisvasusedto pinpointproblematic
code,slicing was usedto reducethe program,andfinally
themodelcheclerwaslaunchedo analyzetheresult.



4.2 The DEOS Avionics Operating System

The DEOS real-time operatingsystem, developed by
Honeywell for use within businessaircraft, is written in
C++. During a manualanalysisof the codethe develop-
ers noticed a subtle error in the system,that testing had
not pickedup. Withoutrelatingwhatthe errorwas,a slice
of the original code, that containedthe error, was handed
over to NASA Ameswith the goal beingto seewhether
a modelchecler canfind the error The error was subse-
guently found after a translationof the codeto Promela.
A full accountof this verificationexercisecanbe foundin
[34]. Sincethesliceof DEOSis fairly large,+1000 linesof
C++, andthe error very subtle,it seemedike a goodcan-
didateonwhichto validateour philosophyof modelcheck-
ing codedirectly. As a first stepthe C++ codewastrans-
latedto Java; this was straight-forvard, sincethe original
C++ codecontainedvery little pointerarithmeticetc. This
resultedin 14 Java classescontainingapproximatelyl000
lines of code. The DEOS systemmustbe put in parallel
with a nondeterministienvironmentin orderto do model
checking.Luckily theervironmentcreatedor the Promela
modelcouldbere-usedby translationinto Java) to a large
extent. This addedanother6 classego the system,for a
combinedtotal of 1443 lines of Java code, makingit by
far the largestexample(in termsof lines of code)ever at-
temptedby JPE Onechangethat wasrequiredin the Jasa
versionof the modelcheckingwasthatwe hadto createan
invariantthatwould shav whentheerroroccurredsincethe
Promelaversionusedan LTL formula, which our current
systemdoesnot support. This invariantis fairly comple,
92 lines of Java, andwascreatedby oneof the developers
of the DEOSsystem.

As with the Spin versionwe startedoff by limiting the
search-deptlof the model checler, sincethe original sys-
tem hasinfinitely mary states. Initial runswere discour
aging,sincethe error wasnot found after runningthe sys-
temfor hours.Howeverwhenpartial-ordereductionsvere
switchedon the error wasfound almostinstantly In fact,
muchfasterthanSpinfoundthe error, but the Promelaand
Java versionsare not identicaland henceone shouldread
nothinginto this result(for example,theorderof nondeter
ministic choicesaredifferent). As in the Promelaversion,
large partsof the systemis executedn atomicsteps.In the
Promelaversionwe applieda predicateabstractiorby hand
to reducethe systemto finitely mary statesthe next step
will beto do the samewith our Java abstractiortool auto-
matically — the currentversionof the tool cannothandle
theabstractiorof predicatesverarrayswhichis arequire-
mentin this case.

5 Conclusionsand Futur e Work

In the first part of this paperwe arguedwhy the formal
methodssubgroupof the software engineeringcommunity
shoulddevote someof their efforts to the analysisof sys-
temsdescribedn real programmindanguagestatherthan
justto their own specialpurposenotations.Thesecondart
of the paperdescribechow we appliedthis philosophyto
theanalysisof Java programs Specifically we shavedthat
modelcheckingcouldbeappliedto Jasa programsywithout
being hamperedy the perceved problemsoften cited as
reasongor why modelcheckingsourcecodewill notwork.
In the processwe shoved that augmentingmodel check-
ing with abstracinterpretationstaticanalysisandruntime
analysiscanleadto the efficientanalysisof complex (Java)
software. Although the combinationof somethesetech-
niguesarenot new, to thebestof our knowledge,our useof
automatiogpredicateabstractioracrosdifferentclassesthe
useof staticanalysigo supportpartial-ordereductionsand
the useof runtimeanalysisto supportmodelcheckingare
all novel contributions.

Sincewe are drawing on different techniquesand the
synegy betweenthesetechniquest shouldbe clear that
mary areadfor future researchexists. Besideshe obvious
extensionsand improvementsof the different algorithms,
therearetwo areasvhich we feel arecrucialto the success
of applyingmodelcheckingto (Java) sourcecode. Firstly,
one needto develop methodsto assistin the construction
of “environments”suitablefor model checking,currently
the usersof amodelcheclerwill constructanervironment
for their modelsby hand,but we believe someautomation
will berequiredif non-expertsareto usethe (Jasa) model
checler. Secondlyit is naive to believe thatmodelcheck-
ing will be capableof analyzingprogramsof 100klinesor
more,hencein thesecasesonewould like to have a “mea-
sure” of how much of the systemwas checled. In soft-
ware testingthis measurds given asa coveragemeasure
andhencewe arecurrentlyinvestigatingneango calculate
typical coveragemeasuregfor example,branchcoverage,
methodcoverage condition/decisiortoverageetc.) during
modelcheckingwith JPF
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